If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+10X-116=0
a = 1; b = 10; c = -116;
Δ = b2-4ac
Δ = 102-4·1·(-116)
Δ = 564
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{564}=\sqrt{4*141}=\sqrt{4}*\sqrt{141}=2\sqrt{141}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{141}}{2*1}=\frac{-10-2\sqrt{141}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{141}}{2*1}=\frac{-10+2\sqrt{141}}{2} $
| 3/4+x=61/8 | | 200,000^x=500,000 | | 50+6x(10-4)=0 | | (x+2x+x)/2=63 | | k/4+20=23 | | 0.5(5a-2)=a-4 | | x+2x+x/2=63 | | 4x^2−24x−108=0 | | 5^(6x)-5^(3x)-20=0 | | 5/9=f/11 | | 4x2−24x−108=0 | | 2x-8+3x-5=180 | | 82-y=50 | | (7x+7)+(5x+14)+59=180 | | 3x+6=7x-32 | | 3j-5=-20 | | 96=6+6b | | 4/57-3y=-33 | | (X+2)(x-7)=52 | | 48x2-8x-1=0 | | (X+4)^2-2(x-5)=(x-3)(x+3)+5(x+6) | | 4x+15=53 | | 2x=40+(0.4*(40+x)) | | 0.3(2x-7)=4 | | 25-3h=16 | | 2/3x3=18x | | 11=23-4c | | (-0.15x+450)/(0.05x^2+2.8x+480)=0 | | 5^3x=145 | | x=20+.2*(40+x) | | 10=5m+15 | | 4/12=x/x+8 |